Partial Solution Set, Leon §4.3

- 4.3.2 Let $[\mathbf{u}_1, \mathbf{u}_2]$ and $[\mathbf{v}_1, \mathbf{v}_2]$ be ordered bases for \mathbf{R}^2 , where $\mathbf{u}_1 = (1, 1)^T$, $\mathbf{u}_2 = (-1, 1)^T$, $\mathbf{v}_1 = (2, 1)^T$, and $\mathbf{v}_2 = (1, 0)^T$. Let L be the linear transformation defined by $L(\mathbf{x}) = (-x_1, x_2)^T$, and let B be the matrix representing L with respect to $[\mathbf{u}_1, \mathbf{u}_2]$. {Note: B was actually part of problem 1 in this chapter. As usual, the first column of B is $[L(\mathbf{u}_1)]_U = (0, 1)^T$, and the second column of B is $[L(\mathbf{u}_1)]_U = (1, 0)^T$.}
 - (a) Find the transition matrix S corresponding to the change of basis from $[\mathbf{u}_1, \mathbf{u}_2]$ to $[\mathbf{v}_1, \mathbf{v}_2]$.

Solution: The transition matrix in question is the one I've been calling T_{UV} , i.e.,

$$S = V^{-1}U = \begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & -3 \end{bmatrix}.$$

- (b) Find the matrix A representing L with respect to $[\mathbf{v}_1, \mathbf{v}_2]$ by computing $A = SBS^{-1}$. Solution: First we find $S^{-1} = \frac{1}{2} \begin{bmatrix} 3 & 1 \\ -1 & -1 \end{bmatrix}$. Then it is a simple matter to determine that $A = SBS^{-1} = \begin{bmatrix} 1 & 0 \\ -4 & -1 \end{bmatrix}$.
- 4.3.3 Let L be the linear transformation on \mathbb{R}^3 given by

$$L(\mathbf{x}) = (2x_1 - x_2 - x_3, 2x_2 - x_1 - x_3, 2x_3 - x_1 - x_2)^T,$$

and let A be the matrix representing L with respect to the standard basis for \mathbf{R}^3 . If $\mathbf{u}_1 = (1, 1, 0)^T$, $\mathbf{u}_2 = (1, 0, 1)^T$, and $\mathbf{u}_3 = (0, 1, 1)^T$, then $[\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3]$ is an ordered basis for \mathbf{R}^3 .

- (a) Find the transition matrix U corresponding to the change of basis from $[\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3]$ to the standard basis.
- (b) Determine the matrix B representing L with respect to $[\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3]$.

Solution:

- (a) This is simply $U = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$.
- (b) Somewhat surprisingly, $B = U^{-1}AU = A$. An interesting sidelight: this means that UA = AU, i.e., we have an instance of a commuting pair of matrices.

4.3.4 Let L be the linear operator mapping \mathbf{R}^3 into \mathbf{R}^3 defined by $L(\mathbf{x}) = A\mathbf{x}$, where A =

$$\begin{bmatrix} 3 & -1 & -2 \\ 2 & 0 & -2 \\ 2 & -1 & -1 \end{bmatrix}$$
. Let $\mathbf{v}_1 = (1, 1, 1)^T$, $\mathbf{v}_2 = (1, 2, 0)^T$, and $\mathbf{v}_3 = (0, -2, 1)^T$. Find the

transition matrix V corresponding to a change of basis from $[\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3]$ to the standard basis, and use it to determine the matrix B representing L with respect to $[\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3]$.

Solution: The transition matrix is $V = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & -2 \\ 1 & 0 & 1 \end{bmatrix}$. We want

$$B = V^{-1}AV = \begin{bmatrix} -2 & 1 & 2 \\ 3 & -1 & -2 \\ 2 & -1 & -1 \end{bmatrix} \begin{bmatrix} 3 & -1 & -2 \\ 2 & 0 & -2 \\ 2 & -1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & -2 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

4.3.5 Let L be the linear operator on P_3 defined by

$$L(p(x)) = xp'(x)" + p''(x).$$

- (a) Find the matrix A representing L with respect to $[1, x, x^2]$.
- (b) Find the matrix B representing L with respect to $[1, x, 1 + x^2]$.
- (c) Find the matrix S such that $B = S^{-1}AS$.
- (d) Given $p(x) = a_0 + a_1 x + x_2 (1 + x^2)$, find $L^n(p(x))$.

Solution:

- (a) We start by applying L to the basis vectors: L(1) = 0, L(x) = x, and $L(x^2) = 0$ 2. The corresponding coordinate vectors become the columns of $A = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$.
- (b) The coordinate vectors for 1 and x are unchanged, but the coordinate vector for $2x^2 + 2$ is now $(0,0,2)^T$, so $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$.
- (c) The change of basis matrix has for its columns the coordinate vectors of the basis from part (b): $S = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
- (d) The coordinate vector of p(x) is $(a_0, a_1, a_2)^T$. The nth power of B is simple to compute because of the simple diagonal structure of $B;\ B^n=\begin{bmatrix}0&0&0\\0&1&0\\0&0&2^n\end{bmatrix}$. It

follows that the coordinate vector for $L^n(p(x))$ is $B^n(a_0, a_1, a_2)^T = (0, a_1, 2^n a_2)$, so $L^n(p(x)) = a_1 x + 2^n a_2 (1 + x^2)$.

- 4.3.8 Suppose that $A = S\Lambda S^{-1}$, where Λ is a diagonal matrix with main diagonal $\lambda_1, \lambda_2, \dots, \lambda_n$.
 - (a) Show that $A\mathbf{s}_i = \lambda_i \mathbf{s}_i$ for each $1 \leq i \leq n$.
 - (b) Show that if $\mathbf{x} = \sum_{i=1}^{n} \alpha_i \mathbf{s}_i$, then $A^k \mathbf{x} = \sum_{i=1}^{n} \alpha_i \lambda_i^k \mathbf{s}_i$.
 - (c) Suppose that $|\lambda_i| < 1$ for each $1 \le i \le n$. What happens to $A^k \mathbf{x}$ as $k \to \infty$?

Solution:

(a) For any choice of $i, 1 \le i \le n$, we have

$$A\mathbf{s}_{i} = \left(S\Lambda S^{-1}\right)\mathbf{s}_{i}$$

$$= S\Lambda \left(S^{-1}\mathbf{s}_{i}\right)$$

$$= S\Lambda \mathbf{e}_{i}$$

$$= S\left(\Lambda \mathbf{e}_{i}\right)$$

$$= S\lambda_{i}\mathbf{e}_{i}$$

$$= \lambda_{i}S\mathbf{e}_{i}$$

$$= \lambda_{i}\mathbf{s}_{i}.$$

(b) This is easily proven by induction: $A^0 \mathbf{x} = \mathbf{x} = \sum_{i=1}^n \alpha_i \mathbf{s}_i$.

Assume that $A^k \mathbf{x} = \sum_{i=1}^n \alpha_i \lambda_i^k \mathbf{s}_i$ for some $k \in \mathbf{N}$. Then

$$A^{k+1}\mathbf{x} = AA^{k}\mathbf{x}$$

$$= A\sum_{i=1}^{n} \alpha_{i}\lambda_{i}^{k}\mathbf{s}_{i}$$

$$= \sum_{i=1}^{n} A\alpha_{i}\lambda_{i}^{k}\mathbf{s}_{i}$$

$$= \sum_{i=1}^{n} \alpha_{i}\lambda_{i}^{k}A\mathbf{s}_{i}$$

$$= \sum_{i=1}^{n} \alpha_{i}\lambda_{i}^{k}\lambda_{i}\mathbf{s}_{i}$$

$$= \sum_{i=1}^{n} \alpha_{i}\lambda_{i}^{k}\lambda_{i}\mathbf{s}_{i}$$

and the result follows by induction.

- (c) Each term in the preceding sum vanishes, since if $|\lambda| < 1$ then $\lim_{k \to \infty} \lambda^k = 0$.
- 4.3.9 Suppose that A = ST, where S is nonsingular. Let B = TS. Show that B is similar to A.

Proof: Assume that A is as described, i.e., that A = ST and that S is nonsingular. Then

$$B = TS = (S^{-1}S)TS = S^{-1}(ST)S = S^{-1}AS,$$

so B is similar to A. \Box

What's the point? Given any square S and T, with at least one of the two nonsingular, we know that it's unlikely that ST = TS. But at least ST and TS are similar. And that (as we shall see) means that they have much in common (eigenvalues, for example).

4.3.10 Let A and B be $n \times n$ matrices. Show that if A is similar to B, then there exist $n \times n$ matrices S and T, with S nonsingular, such that A = ST and B = TS.

Solution: Well, at least a hint. Note that we are proving the converse of (9). This is perhaps easier than it initially seems. Assume that A is similar to B. You may then write B in terms of A and another (nonsingular) matrix S, right? Do so. Now what?